Метод на най-малките квадрати
Метод
на
най-малките
квадратни модели
Методът на най-малките квадрати е един от най-
разпространените методи за анализ на статистически
данни и заема особено място в развитието на науката .
Има данни, че Гаус е намерил метода на най-малките
квадрати още през 1795 г. и с известно основание неговото
име се свързва като изобретател на този инструментариум.
Методът на най-малките квадрати обикновено се
свързва с линейните статистически модели, при които най-
ярко личи неговата ефикасност. Линейността на тези
модели не представлява съществено ограничение и
нелинейните зависимости по принцип може да се
привеждат към линейни.
Понятието
зависимост
зависимост означава връзка между две или
повече променливи величини. Когато зависимостта е
изразена математически, тя се нарича функция.
?
Най-общият аналитичен вид на една зависимост е: Y=f(X),
където X и Y са метрично скалирани променливи.
?
Х се нарича аргумент на функцията или
независима
независима
променлива.
променлива.
?
У е
зависима променлива
зависима променлива (тъй като се предполага, че
зависи от Х) или функция.

Това е предварителен преглед. За да прегледате цялата презентация, натиснете бутона по-долу.

Виж цялта презентация
Преглеждането на цялата презентация онлайн ще ви струва един кредит.
Слайд 1 от 16
свали
Последно свалили материала:
ДАТА ИНФОРМАЦИЯ ЗА ПОТРЕБИТЕЛЯ
02 авг 2019 в 13:16 студент на 42 години от Долна Митрополия - Факултет "Авиационен" към НВУ "Васил Левски", В.Търново, факулетет - Авиационен, специалност - Автоматика, информационна и управляваща техника, випуск 2021
18 мар 2019 в 19:24 студентка на 40 години от Габрово - Технически университет, факулетет - ЕЕ, специалност - КСТ, випуск 2014
 
Домашни по темата на материала
Линейно оптимиранесъс solver
добавена от tsvetelinamilusheva 25.04.2015
1
6
 

Метод на най-малките квадрати

Материал № 986874, от 17 апр 2013
Свален: 54 пъти
Прегледан: 91 пъти
Предмет: Математическо моделиране и приложение на математик, Математика
Тип: Презентация
Брой страници: 16
Брой думи: 1,143
Брой символи: 7,697

Потърси помощ за своята домашна:

Имаш домашна за "Метод на най-малките квадрати"?
Намери бързо решение, с помощтта на потребители на Pomagalo.com:

Последно видяха материала